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INTRODUCTION

This annual summary report describes research performed from 14 August 1992
through 31 August 1993 with support from ONR under grant N00014-89-J-1003.
Three main projects are discussed in this report:

I. Nonlinear Rayleigh Waves
II. Pulsed Finite Amplitude Sound Beams
II1. Finite Amplitude Sound in Waveguides
Contributions to these projects were made by the following individuals:
Senior Personnel
e M. F. Hamilton, principal investigator
e Yu. A. Il'insky, visiting scientist
e E. A. Zabolotskaya, visiting scientist
Graduate Students
e M. A. Averkiou, Ph.D. student in M«chanical Engineering
e E. Yu. Knight, M.A. student in Physics
¢ Y.-S. Lee, Ph.D. student in Mechanical Engineering
o G. D. Meegan, Ph.D. student in Physics
e D. J. Shull, M.S. student in Electrical Engineering
e T. W. VanDoren, Ph.D. student in Mechanical Engineering

Although Professor Il'insky was in Moscow during the entire period covered by
this report, he was instrumental in the research performed on nonlinear Rayleigh
waves as a result of his visit to Austin during the 1991-92 academic year. Professor
II'insky was consulted frequently by our group during the past academic year.
Dr. Zabolotskaya is on leave from the General Physics Institute in Moscow.

The main source of financial support, in addition to that provided by ONR,
has been the David and Lucile Packard Foundation Fellowship for Science and En-
gineering. Computing resources were provided by The University of Texas System
Center for High Performance C~—nuting.

The following manuscripts . i abstracts, which describe work supported at
least in part by ONR, have beer »ublished (or submitted for publication) since
14 August 1992.




Refereed Journals

¢ Yu. A. Il'inskii and E. A. Zabolotskaya, “Cooperative radiation and scattering

of acoustic waves by gas bubbles in liquids,” J. Acoust. Soc. Am. 92, 2837-
2841 (1992).

e M. F. Hamilton, “Transient axial solution for the reflection of a spherical

wave from a concave ellipsoidal mirror,” J. Acoust. Soc. Am. 93, 1256-1266
(1993).

e C. M. Darvennes and M. F. Hamilton, “Additional remarks on parametric
reception near a reflecting piane,” J. Acoust. Soc. Am. 93, 3507-3510 (1993).

e M. F. Hamilton, Yu. A. II'insky, and E. A. Zabolotskaya, “On the existence

of stationary nonlinear Rayleigh waves,” J. Acoust. Soc. Am. 93, 3089-3095
(1993).

e D. J. Shull, M. F. Hamilton, Yu. A. II'insky, and E. A. Zabolotskaya, “Har-

monic generation in plane and cylindrical nonlinear Rayleigh waves,” J. Acoust.
Soc. Am. 94, 418-427 (1993).

e M. A. Averkiou, Y.-S. Lee, and M. F. Hamilton, “Self-demodulation of am-

plitude and frequency modulated pulses in a thermoviscous fluid,” J. Acoust.
Soc. Am. (in press).

Conference Proceedings
e M. F. Hamilton, “A transient solution for the axial pressure field of a spark-

source lithotripter,” Proceedings of the 14th International Congress on Acous-
tics, edited by P. Li (Beijing, China, 1992), Vol. 1, Paper A5-1.

e M. A. Averkiou, Y.-S. Lee, and M. F. Hamilton, “Self-demodulation revis-
ited,” Advances in Nonlinear Acoustics, edited by H. Hobek (World Scien-
tific, Singapore, 1993), pp. 251-256.

e D. J. Shull, M. F. Hamilton, and E. A. Zabolotskaya, “Nonlinear Rayleigh
wave beams,” Advances in Nonlinear Acoustics, edited by H. Hobaek (World
Scientific, Singapore, 1993), pp. 496-501.

Oral Presentation Abstracts

e D. J. Shull, M. F. Hamilton, Yu. A. Il'insky, and E. A. Zabolotskaya, “Har-
monic interactions in plane and cylindrical nonlinear Rayleigh waves,” J.
Acoust. Soc. Am. 92, 2358 (1992).

o M. F. Hamilton, Yu. A. I'insky, and E. A. Zabolotskaya, “On the existence of
stationary nonlinear Rayleigh waves,” J. Acoust. Soc. Am. 92, 2358 (1992).
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e M. F. Hamilton, Yu. A. I'insky, and E. A. Zabolotskaya, “Rayleigh wave
nonlinearity,” J. Acoust. Soc. Am. 93, 2384 (1993).

Theses

o C. E. Bruch, “Second harmonic generation in Pekeris waveguides,” M.A.
Thesis, The University of Texas at Austin (December 1992).

e D. J. Shull, “Harmonic generation in plane, cylindrical, and diffracting non-
linear Rayleigh waves,” M.S. Thesis, The University of Texas at Austin (May
1993).

e T. W. VanDoren, “Propagation of finite amplitude sound in multiple wave-
guide modes,” Ph.D. Dissertation, The University of Texas at Austin (August
1993).

I. Nonlinear Rayleigh Waves

Portions of the work described in this section were performed by Yu. A. I'insky,
E. Yu. Knight, G. D. Meegan, D. J. Shull, and E. A. Zabolotskaya. Three projects
are described below: diffracting nonlinear Rayleigh wave beams, pulsed nonlinear
Rayleigh waves, and local and nonlocal nonlinearity in Rayleigh waves. All three
projects are based on the theoretical model developed by Zabolotskaya! for the
propagation of nonlinear Rayleigh waves in isotropic solids.

A. Diffracting Nonlinear Rayleigh Wave Beams

This project is completed, and it was reported first in Shull’s masters thesis.?
Shull graduated with a masters degree in Electrical Engineering in May 1993. The
following discussion is mainly excerpted from the proceedings® that accompanied
the presentation of this material at the 13th International Symposium on Nonlinear
Acoustics (Bergen, Norway, June-July 1993). An article is currently in preparation
for submission to Journal of the Acoustical Society of America.

Linear theory for diffracting, monofrequency, Rayleigh wave beams is well
established.* Here, nonlinear effects that produce harmonic generation and wave-
form distortion in diffracting Rayleigh wave beams are taken into account. The
isotropic elastic half space that supports the Rayleigh wave occupies the region
z < 0. The source is in the plane £ = 0 and it radiates in the +z direction. Of
interest here is the effect of finite source width in the y direction, which leads to
diffraction in the (z,y) plane.

For simplicity, all equations presented below are in dimensionless form. A
complete list of definitions for all parameters needed to perform the calculations
may be found elsewhere.?® Only parameters that are necessary for interpretation
of the results are provided.




The analysis applies to the horizontal (v;) and vertical (v,) components of the
particle velocity vector. The components are written in the dimensionless forms
V: = vz /v and V, = v, /vy, where vy, and vy, are characteristic source velocity
amplitudes, and the following Fourier series expansions are introduced:

V=3 & WENUKZE™ V=i 3 WX Ua@e™ 1)
where X = z/z, is an axial coordinate in terms of the Rayleigh distance z, =
koa?/2, ko = wo/cR is a wavenumber in terms of the fundamental angular frequency
wo of the source and the small signal Rayleigh wave speed cg, a is a characteristic
source dimension, ¥ = y/a is a dimensionless transverse coordinate, Z = koz is
a dimensionless depth coordinate, and 7 = wg(t — z/cg) is a retarded time. The
functions U, and U, describe the depth dependencies, according to linear theory,
for the individual harmonic components. The following set of coupled equations
can then be derived, within the parabolic approximation, for the finite amplitude
behavior of the spectral components in a diffracting beam:®

v, 18, >
X T Tmoys tAVe= "B L, sen(mhRmVaVl @)

where | = n—m, A, = a,Z, is an absorption parameter in terms of the small signal
attenuation coefficient a, at frequency nwo, B = zo/F is a dimensionless source
amplitude expressed in terms of the distance ¥ that characterizes the nominal shock
formation distance for a plane wave, and R, is a matrix of coupling coefficients for
the harmonic interactions. A model similar to Eq. (2), but without an absorption
term, was proposed by Parker.”

Asymptotic quasilinear solutions of Eq. (2) for the farfield of the fundamen-
tal and second harmonic components have been derived for arbitrary amplitude
distributions at the source. The results are similar (apart from decay rates) to
those obtained for sound beams in fluids, and shall not be presented here. Instead,
attention is focused on numerical solutions of the fully nonlinear system.

To integrate Eq. (2) numerically with the diffraction term included, it is con-
venient to introduce a coordinate system which follows the divergent spreading of
the beam.® The appropriate transformation for a cylindrically spreading beam is
defined as follows:??

Vu(X,¥) = Vo(X,Y)VX 4 +_6exp(—

inY? Y
X+ 6) Y=x+3 (3)
where 4 is a parameter that controls the divergence (§ > 0) or convergence (§ < 0)

of the original coordinate system. Elimination of V, and Y in Eq. (2), in favor of
V., and Y, yields

aVn 1 B’V,. _ an -
)¢ + 4in(X + 6y 67“ + 4,V = "7;-‘77 MZ_I“ ssn(m’)RszmV: (4)
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The results presented below were obtained by solving Eq. (4) with finite difference
methods (following minor modifications) that are commonly used to integrate the
spectral form of the KZK equation.!®

The results were calculated for a monofrequency source with a uniform rectan-
gular amplitude distribution as a function of the transverse coordinate Y:

wov)y=1 [Y|<1 (5)
=0 |Y|>1
Va(0,Y)=0 n>1

This source condition is a common model for interdigital transducers that are used
on surface acoustic wave devices.* Investigations based on other source conditions,
including focused and asymmetric sources, are reported elsewhere.?? The values
A; = 1072 and B = 1 were used in all computations, and the attenuation co-
efficients depend quadratically on frequency (A, = n?4;). All numerical results
presented below are for the free surface Z = 0, and they are based on a coefficient
matrix Ry that was evaluated with parameters for steel.!

Presented in Fig. 1 are (a) axial propagation curves and (b) beam patterns for
the lowest four harmonic components in a Rayleigh wave beam of finite amplitude.
The results are qualitatively similar to those for finite amplitude sound that is
radiated into a viscous fluid by a uniform circular source.® In particular, efficient
harmonic generation occurs mainly in the nearfield (X < 1), and the beam pattern
for the nth harmonic component possesses n times as many sidelobes as are pre-
dicted by linear theory. The beam pattern for the fundamental component has a
flatter main lobe and higher sidelobes than are predicted by linear theory (because
of shock formation in the main lobe), which is again consistent with the results for
finite amplitude sound in fluids.

Axial waveforms for the horizontal velocity component, at three distances from
the source, are presented in Fig. 2. At X = 1.5, the sharpening of the peak and the

0

0 N=1 (a)
— '20
8 20

2
§ 40 3 40
4
60 -80 A ]
0.1 1 10 100 0 5 10
X ko tan 0

Figure 1: (a) Axial propagation curves (Y = 0) and (b) beam patterns at X =10
for the lowest four harmonic components in a Rayleigh wave beam.




rounding of the trough are characteristic of the effect of diffraction on waveforms
in fluids. However, the waveform asymmetry in a cylindrically spreading (two
dimensional) beam is less than in a spherically spreading (three dimensional) beam.
The waveform asymmetry in Fig. 2 is even less noticeable at X = 3, where a cusped
sawtooth profile, similar to that predicted for plane waves, has formed. Note the
approximately 7 /4 phase advance in the positions of the shocks, which agrees with
linear diffraction theory for the phase of the fundamental component in the farfield.

1 1 1

Vx 0 0 0

-1 X=15 | 1  Xs20 | X=3.0
0 x 2x O T 2n x
Wolt-X/CR) @o(t-X/CR) wo(t-XCR)

Figure 2: Horizontal velocity waveforms along the axis of a beam.

2x

Finally, transverse amplitude distributions for the lowest three harmonic com-
ponents in the nearfield of the beam, at X = 0.18 (which is the location of the
last axial minimum in the nearfield of the fundamental component), are presented
in Fig. 3. The distribution for the fundamental component is very close to that
predicted by linear theory.*

Nmi n=2 n=3

IVnl

-2 -1 0 1 2-2 - 0 1 22 -1 0 1 2
Y Y Y
Figure 3: Transverse harmonic amplitude distributions in the nearfield of a beam
(X =0.18). A different vertical scale is used for each of the harmonics.

B. Local and Nonlocal Nonlinearity in Rayleigh Waves

Results from this work were presented!! at the 125th Meeting of the Acoustical
Society of America in Ottawa, Canada (May 1993). An article is currently in
preparation for submission to Journal of the Acoustical Society of America.
Previous theoretical investigations of waveform distortion and shock forma-
tion in finite amplitude Rayleigh waves are based on periodic waveforms, mainly
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waveforms that are sinusoidal at the source. Theoretical investigations of pulsed
nonlinear Rayleigh waves, e.g., those which are exploited in nonlinear signal pro-

cessing applications of surface acoustic wave (SAW) devices, are based on simple
quasilinear models of the form'?

va(t) = //T h(t = t',t — " )oy (¢ )vq (") dE'dt” (6)

Here vy(t) and v;(t) are signals whose weak nonlinear interaction produces a sec-
ondary signal v3(t) at a given location, A(t1,¢;) is an impulse response, and T is
an interval that includes the duration of the interaction (or, alternatively, it is an
integer number of periods in a time harmonic system). In models such as Eq. (6),
h(t1,t3) is simply a delta function that accounts for time delays associated with
the interacting waves.

Several limitations of Eq. (6) can be noted. First, the theoretical model is
quasilinear and can thus account only for weakly nonlinear effects, such as sum
and difference frequency generation in harmonic waves, or products which can be
associated with convolutions or correlations of the pulsed signals v, and v;. It
cannot account for the nonlinear distortion of a Rayleigh as it propagates, and it
cannot account for shock formation. Second, the impulse response h(¢,, ¢;) is based
on empirical results—no analytical expressions for h(t;,?;) have appeared in the
literature. Third, the assumption that h(t,,t;) is proportional to delta functions
is equivalent to the assumption that the nonlinearity in Rayleigh waves is entirely
local. However, it is known that nonlinearity in Rayleigh waves is nonlocal, as
pointed out first by Parker and Talbot.!3

Zabolotskaya! showed that the evolution equation for the horizontal velocity
component at the surface of an isotropic solid may be written in the form

av C 3 ” r /3 "
% = a7 /T L(r = 7,7 = ")o(z,7")v(z, ") d'd" )

where v(z,7) is the horizontal velocity component, z is distance, r =t — z/cp is
a retarded time, L is the kernal of the integral operator, and C is a dimensionless
constant. In her original paper,! the kernel L was expressed as the Fourier series

L(ty,ts) = Y [m + | Rpy e~ ™ot —ilunta (8)
ml

where R, is the same matrix that appears in Eq. (2).
During the past year, it was shown that L can be expressed in the explicit
time-domain form

B(t/ta)
EET ) ©)

where A is a dimensionless constant, B is dimensionless function of the ratio ¢, /¢,
and § is the Dirac delta function. Explicit expressions for A and B (as well as

Lits,ts) = T° [Aam )6(ta) +
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C), in terms of second and third order elastic constants of the material, have been
derived. Substitution of Eq. (9) in Eq. (7) yields

v _Cl,0 3 r — 7\ v(z, ”)v(z, ") drdr"
3.1'-(:%['461- +61-,//1-B(-,-__Tn) (=T +(r—r') (10)

Setting B = 0 in Eq. (10) produces an equation identical in form to that for plane
sound waves of finite amplitude in a lossless fluid. Nonlinearity in fluids is entirely
local: finite amplitude distortion at an instant on the waveform is determined (in
the preshock region) by the value of 3v?/3r at that same instant. The first term
on the right-hand side of Eq. (9) is thus associated with local nonlinear effects. In
contrast, nonlinearity due to the integral in Eq. (10), at a given instant 7, depends
on the value of v at all instants . The second term on the right-hand side of Eq. (9)
is thus associated with nonlocal nonlinear effects. The nonlocal nonlinearity in
Rayleigh waves is what distinguishes their finite amplitude properties from those
of sound waves in fluids.

Comparison of Egs. (6) and (10) illustrates the limitations of Eq. (6) that were
discussed above. Equation (10) describes the evolution of the signal throughout its
path of propagation, not just at a single point; it accounts for waveform distortion
and shock formation; it is derived rigorously in terms of second and third order
elastic constants of the material; and it accounts for nonlocal as well as local
nonlinear effects.

Although Eq. (10) is an explicit evolution equation for nonlinear Rayleigh waves,
and it provides substantial insight into the nature of the nonlinearity, its form
is not the most convenient for performing numerical calculations (e.g., such as
those required to describe waveform distortion, as depicted in Fig. 2). Instead, a
differential evolution evolution which is currently under development [Eq. (4) of the
previous annual summary report!*] provides a more practical means of performing
time domain calculations for nonlinear Rayleigh waves.

C. Pulsed Nonlinear Rayleigh Waves

The following results for pulsed Rayleigh waves were obtained by Knight, who
entered the M.A. program in the Physics Department in fall 1992. Knight receives
her salary support from Los Alamos National Laboratory.

As noted above, there are no reported theoretical predictions of nonlinear distor-
tion and shock formation in pulsed Rayleigh waves. In fact, numerical simulations
of even periodic Rayleigh waveforms, well beyond the point of shock formation, have
been calculated only on the basis of Zabolotskaya’s model equations.!*® There are
presently three approaches that may be followed to investigate pulsed nonlinear
Rayleigh waves numerically. One is to construct repeated sequences of pulses with
harmonic series and then solve an equation similar to Eq. (2). Equation (7) can
also be used, but the convolution is very time consuming. Finally, the differential

8 .




evolution equation which is discussed in the previous annual summary report’* can
be used (this work is currently in progress). Here, the first approach is used to
obtain numerical results for plane wave pulses. Equation (2) is rewritten in terms
of different dimensionless quantities:

a‘/n ' n2 [o ]
e F AV == 3 sgn(ml)RuVinV (11)

m=-oo

where X = z/T and A, = aaZ. The distance and attenuation parameters are now
scaled according to Z, the nominal shock formation distance in steel at the center
frequency of the pulse. The center frequency is taken to be the Nth harmonic in
the Fourier series expansion. Waveforms are again obtained from Egs. (1). Care
must be taken that the repetition rate of the pulses described by the Fourier series
is sufficiently low that successive pulses do not interact with each other.

Shown in Fig. 4 are predictions for the propagation of a short tone burst (center
frequency wo) with a Gaussian envelope function, for Ay = 0.01. The center
frequency of the source waveform, wy, is N = 20 times the fundamental frequency
in the Fourier series representation. Replicas of the pulses shown in Fig. 4 are
repeated at wor/2xr = 20n, where n = +1,12,.... The number of harmonics
retained in the computations was 500, which corresponds to 25 harmonics of the
center frequency at the source.

The horizontal and vertical velocity waveforms are shown (as functions of dis-
tance X) in the second and third columns of Fig. 4, respectively. In the first col-
umn, for comparison, are predictions for the propagation of sound in a fluid (based
on the Burgers equation), at distances where the distortion is similar to that in
the horizontal component of the Rayleigh wave particle velocity. The ranges at
which the calculations for fluids are compared with the calculations for Rayleigh
waves are based on comparisons of the shock formation distances. Specifically,
waveforms are compared at distances that are the same when normalized by the
distance where shock formation first occurs in an initially sinusoidal wave at the
center frequency of the source. The dimensionless absorption coefficients are also
adjusted accordingly.

Comparison of the waveforms in the first two columns reveals that the propaga-
tion of a Rayleigh wave pulse resembles somewhat the propagation of an acoustic
pulse in a fluid. One main distinction, as in the case of periodic waves,! is the
cusping near shocks in the Rayleigh waves. In contrast, sound waves in fluids
have more of a sawtooth profile (e.g., at X = 10). Beyond the shock wave region,
both waveforms experience self-demodulation and tend toward a wave shape that
is more closely related to the envelope of the source waveform than to the center
frequency. Comparison of the waveforms at X = 400 and X = 1200 reveals that
the absorption in this example is sufficiently weak that the demodulated waveforms
are beginning to form shocks. Moreover, the “N wave” predicted in the fluid at
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Figure 4: Horizontal velocity waveforms (second column), vertical velocity wave-
forms (third column), and corresponding frequency spectra (fourth column) for a
nonlinear Rayleigh wave pulse, as functions of distance. In the first column are
comparable results for sound waves in fluids..
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X = 1200 has twice the amplitude of the horizontal component of the Rayleigh
wave, and the head and tail shocks have already begun to move away from each
other.

o
o

] X=0 X=20
20 | -20 p.-,
40} 40 |
-60 . -60
0
ofF X=40
20 0L
“wof -40
-60 -60
0 0
X=10 X=100
.29 :’_ -20 -
: \ " ——  Rayleigh Wave
° A T
ff O A Y o= Sound Wave
0 RVARAW. AN e LiLE . .
4 5 6 0 1 2 3 4

/o, /@,

Figure 5: Comparison of frequency spectra for pulses similar to those in Fig. 4, but
with higher attenuation..

In Fig. 5 are shown comparisons of frequency spectra for Rayleigh waves (solid
lines) and for sound waves (dashed lines) in fluids, again at distances that are
matched according to the scheme described above. Here, the absorption is ten
times greater than in Fig. 4 (Ay = 0.1). At X = 2, the generation of higher
harmonics in Rayleigh waves and sound waves is very similar, both in terms of
spectral amplitudes and bandwidths. Note, however, that the generation of “dif-
ference frequencies” (i.e., spectral components below the frequency band of the
primary wave) is more efficient in sound waves than in Rayleigh waves. [This f-
fect can be demonstrated analytically by comparing quasilinear solutions, for sound
waves and Rayleigh waves, for the case of sum and difference frequency generation.}
The spectra in Fig. 5 thus assist interpretation of the waveforms in the first two
columns of Fig. 4. Up to X = 10 in Fig. 4, the processes of distortion and shock
formation, which are determined mainly by higher harmonic generation, are very
similar in sound waves and Rayleigh waves. At X = 40, the stronger difference
frequency generation in the fluid can be noticed. Comparison of the sound wave
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at X = 200 and the Rayleigh wave at X = 400 reveals that the sound wave in this
example demodulates in approximately half the distance required for the Rayleigh
wave, and the final waveform in the fluid has nearly twice the amplitude as the
Rayleigh wave.

D. Nonlinear Stoneley waves

This research is being performed by Meegan, who is supported by ONR through the
AASERT program. Meegan entered the Ph.D. program in the Physics Department
in fall 1992.

The main focus of Meegan'’s research is the development of a theoretical model
for nonlinear Stoneley waves. The goal is to extend the model equation for Rayleigh
waves, Eq. (11), to account for the spectral interactions in Stoneley waves. In prin-
ciple, the method of accomplishing this task is straightforward. The Hamiltonian
formalism employed by Zabolotskaya! to derive Eq. (11) for Rayleigh waves is eas-
ily adapted for application to Stoneley waves. The main difficulty is the amount of
algebra required to derive the matrix R,,, which is more cumbersome for Stoneley
waves than for Rayleigh waves (even the algebra for Rayleigh waves is exceedingly
tedious to accomplish by hand). The plan is to use the Mathematica symbolic
computation software to overcome the obstacle presented by the algebra. The first
step, the development a Mathematica program which reproduces Zabolotskaya’s
results for Rayleigh waves,! is completed. The relevant material parameters re-
quired to analyze nonlinear Stoneley waves have been identified, and therefore the
remaining task is to modify the Mathematica program to calculate the nonlinearity
matrix.

A second objective of Meegan'’s research is to obtain measurements of nonlin-
ear Rayleigh waves that would complement recent theoretical predictions.!® Our
laboratory was not equipped previously to either generate or measure Rayleigh
waves, and therefore time was devoted to development of the required facilities.
Pinducer receivers have been purchased, and piezoelectric wedge transducers have
been obtained for use as both sources and receivers. Preliminary measurements in
aluminum have indicated the existence of harmonic generation due to finite am-
plitude propagation. However, poor signal-to-noise ratios are encountered even at
the second harmonic frequencies, and therefore more efficient source and receiver
configurations are being considered.
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II. Pulsed Finite Amplitude Sound Beams

Portions of the work described in this section were performed by M. A. Averkiou
and Y.-S. Lee. Lee successfully defended his Ph.D. dissertation in the Mechanical
Engineering Department in July 1993. His dissertation describes the development
of a computer code for solving the KZK equation for pulsed sound beams of finite
amplitude in thermoviscous fluids. After he makes minor revisions in the disserta-
tion, Lee will be eligible to graduate in December 1993.

A. Uniformly Valid Axial Solution for Self-Demodulation

This project, performed by Averkiou and Lee, is completed and is reported in two
publications: in the Proceedings of the 13th International Symposium on Nonlinear
Acoustics'® (Bergen, Norway, June-July 1993); and in an article that is pending
publication in Journal of the Acoustical Society of America.'® The following dis-
cussion follows the former publication.!®

Our investigation of the classic problem of self-demodulation was described in a
previous annual report,!* where comparison of experiment was made with numerical
predictions.!” In the process of completing that work, a simple yet very accurate
analytic solution was developed for the field along the axis of the sound beam. The
source is assumed to be a circular piston that vibrates with uniform amplitude in
the plane ¢ = 0, i.e.,

P@O,p7)=f(r) p<1 (12)
=0 p>1

where P(o,p,T) is a dimensionless pressure, o is dimensionless range in terms of
the Rayleigh distance, p is a dimensionless coordinate transverse to the axis of the
beam, normalized by the piston radius, and 7 is a dimensionless retarded time.
The time dependence f(7) is defined in terms of an amplitude modulation E(r)
and phase modulation ¢(7) of a sinusoidal oscillation, as follows:

f(r) = E(7)sin[r + ¢(7)] (13)

The dimensionless expression for the instantaneous angular frequency is thus Q(7) =
1+ d¢/dr. Now assume that E(7) and ¢(7) are slowly varying functions in com-
parison with sinr. Combining various results of others,!=?! we obtain for AR 1
(absorption length less than the Rayleigh distance) and I' = S1 (where ' is the
Gol’dberg number), the following solution for the axial waveform:!®

M exp(-r?
P(0,0,7) = f(”)—f(f-”-l)'*'i J‘( = ) ]* xP(‘/=__[=4=A_02(14)

8o dr2\ 1+ d¢/dr 4rAc

where the asterisk indicates convolution with respect to 7.
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The first two terms within the square brackets of Eq. (14) represent the cen-
ter wave and edge wave, respectively, associated with the axial field of the primary
beam radiated by a uniform piston source. The convolution of these two terms with
the exponential dissipation function outside the brackets accounts for thermovis-
cous attenuation of the primary beam, which was investigated recently by Fraysa,
Naze Tjgtta, and Tjgtta.?! The third term in the square brackets is the farfield
result for the low frequency, secondary pressure waveform produced by the distor-
tion of the primary beam. With ¢ = const, the third term reduces to the classical
result of Berktay.!® The factor d¢/dr accounts for the effect of phase modulation,
which was considered by Gurbatov, Demin, and Malakhov.!® Convolution of the
third term with the dissipation function approximates the effect of thermoviscous
attenuation on the secondary wave, in accordance with the approach followed by
Cervenka and Alais.?®

The accuracy of Eq. (14) can be tested against numerical results from the finite
difference solution developed by Lee.!” To perform this comparison we consider the
limiting values A = 1 and I’ = 1 (agreement is expected to improve for larger A
or smaller I'). For the source waveform we let E(7) = exp[—(7/25%)%) and ¢(7) =
~5sin(7/25), which produces a pulse with sinusoidal frequency modulation. The
dimensionless frequency of the carrier wave thus increases from Q = 0.8 in the
center of the pulse to 2 =~ 1.2 at either end. In the left column of Fig. 6 is
presented a comparison of time waveforms predicted by the finite difference solution
(solid lines), and by Eq. (14) (dashed lines). In the right column of Fig. 6 are
shown the corresponding frequency spectra S, normalized to yield peak amplitudes
of unity at the source (¢ = 0). The waveform and frequency spectrum at the
source are presented in the top row, and the decibel values listed in each frame
indicate the level relative to that at the source. Although they are not always easily
distinguished, both dashed and solid lines are printed in each frame of Fig. 6.

Equation (14), despite the rather stringent conditions under which it was de-
rived, is in good agreement with the numerical solution throughout the axial field.
At 0 = 4, the main effect that can be seen is due to thermoviscous dissipation
of en: :gv in the primary beam, which causes the ends of the pulse to attenuate
more rapidly (because of the higher instantaneous frequency) than the middle. At
o = 12, the demodulated waveform dominates the contributions at the ends of the
pulse, but the primary wave still dominates the middle. The final demodulated
waveform is achieved at ¢ = 24. The positive pressures at the ends of the pulse
are due primarily to amplitude modulation, and the negative pressure in the mid-
dle is due primarily to frequency modulation. Increasing A (with respect to the
value of unity used in Fig. 6) leads to predictions by Eq. (14) which are virtually
indistinguishable from the numerical predictions. Whereas the finite difference so-
lution requires computation times on the order of ten minutes on a super computer,
Eq. (14) requires only minutes on a personal computer.
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Figure 6: Left column: Comparison of the axial solution (dashed lines) with numer-
ical results from the finite difference solution (solid lines) for a frequency modulated
pulse (¢ = 0), with A =T = 1. Right column: Frequency spectrs of the waveforms
in the left column (both dashed and solid lines).
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B. Measurements of Pulsed Sound Beams in Water

This research was performed by Averkiou, and it will be reported at the fall 1993
meeting of the Acoustical Society of America in Denver. The following is the
abstract that was submitted for that meeting:*

Measurements are reported for finite amplitude acoustic pulses radiated
by plane circular pistons in water. Pulses with center frequencies of sev-
eral megahertz, peak sound pressures up to 1 MPa, durations ranging
from approximately two to twenty cycles, and different amplitude and
frequency modulations were investigated. Measurements of short pulses
were made very near the source, where the center wave and edge wave
can be separated. Pulse envelope distortion that accompanies shock for-
mation in frequency modulated tone bursts is demonstrated. Acoustic
saturation of pulsed sound beams is also investigated. All measure-
ments are compared with theoretical predictions obtained from a com-
puter code that solves the KZK equation in the time domain.!” Very
good agreement between theory and experiment is obtained both in the
nearfield and the farfield, on and off axis. Artifacts in measurements of
waveforms containing shocks, which are attributed to bandwidth limi-
tations of membrane hydrophones, are discussed.

Representative samples of the results are shown in Fig. 7. The results are for
radiation from a 1-inch diameter source in water at a center frequency of 1 MHz.
The pulse envelope is Gaussian, and the equivalent shock formation distance for a
plane wave is approximately twice the Rayleigh distance of the source. As before,
0 = z[/2 and p = r/a. The first three rows show axial waveforms beginning at
the source (0 = 0) up to ¢ = 2.9, beyond the shock formation distance. The last
three rows show waveforms acroes the beam at o = 2.9, beginning on axis (p = 0)
and moving out to p = 5. The frequency spectra in the last three rows reveal the
increase in directivity as a function of increase in harmonic number. Agreement of
theory and experiment, both on and off axis, is excellent.
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III. Finite Amplitude Sound in Waveguides

VanDoren completed his research on this project, and he received his Ph.D. in
August 1993. The primary source of VanDoren’s salary support during the past
two years was a Rockwell Fellowship, and much of his equipment purchases were
funded by the Packard Foundation. Here we report only the main results from his
dissertation.

VanDoren considered the analysis of a waveguide formed by a horizontally strat-
ified medium, with z designating the axis of the waveguide and z the transverse
coordinate. Acoustic propagation in the waveguide is modeled by the following
modified form of the Westervelt equation:

5’p+6“p_ 1 &#p_ B &Fp
0z2 " 9z 3(z)0t? T pocd Ot?

where p is the sound pressure, ¢(z) accounts for weak variation of the sound speed
transverse to the waveguide axis, and the right-hand side is the standard noalinear
term in the Westervelt equation. The procedure for solving Eq. (15) is an extension
of the method outlined in Ref. 23. It is assumed that the solution may be expressed
in the form

(15)

p= % 33" Prun(2)bma()e Wt 4mn) 4 ¢ c. (16)

where ¢, are eigenfunctions that describe the transverse distributions of the nor-
mal modes (mode m, frequency nw) and satisfy boundary conditions at the walls
(assumed parallel to the z axis), pma account for amplitude variations along the
axis of the waveguide, and k. are axial wavenumbers obtained from linear theory.
If the wall impedances are locally reactive, then the eigenfunctions are orthogo-
nal, and the following approximate system of first-order equations can be obtained
following substitution of Eq. (16) into Eq. (15):

n~-1
Fan(5) + G (5) = g T |3 ol (2) + 2, o8 ()] 17

where anm, are attenuation coefficients that were introduced ad hoc, the function
g, dccounts for difference frequency generation, and g3),,, accounts for sum
frequency generation. The summations over r and p account for all combinations
of modes in which the spectral components can interact, and the summation over ¢
accounts for all frequency pairs that combine to yield the nth harmonic frequency
component on the left-hand side. Equation (17) was solved with a standard fourth-
order Runge-Kutta method.

A main advantage of the above solution technique is that the parabolic ap-

proximation is avoided, and accurate solutions are not restricted only to waves
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that propagate at small grazing angles (with respect to the axis of the waveguide).
In addition, the modal decomposition that is inherent in the solution facilitates
physical interpretation of the results. An alternative and currently popular model
equation for investigating finite amplitude sound in waveguides is the Nonlinear
Parabolic Equation’* (NPE). However, rather than make comparisons with solu-
tions of the NPE, we compare results obtained from Eq. (17) with finite difference
solutions of the KZK nonlinear parabolic equation, which is subject to the same
general restrictions as NPE. The test case involved propagation in an air-filled
rectangular duct with rigid walls (duct width of 6.6 cm in z direction) in which a
primary wave at frequency 4350 Hz was excited in the lowest two modes. The two
numerical solutions were compared with each other and with experiment.

Figure 8 shows the numerical solution of Eq. (17) (solid lines) compared with
the numerical solution of the KZK equation (dotted lines) and experiment (circles)
for the (a) primary wave and (b) nonlinearly generated second harmonic component
due to a source level of 150 dB (re 20 ;4Pa). Note that the solution of the KZK
equation reveals phase errors, as a result of the parabolic approximation, at both
n = 1 and n = 2, although the overall amplitudes are in good agreement with
Eq. (17). Note the good agreement of Eq. (17) with the measurements.

Figure 9 shows comparisons of waveforms due to a source level of 154 dB. The
high frequency oscillations in the first and third columns are Gibbs oscillations due
to truncation of the Fourier series at 20 harmonics. Note the good agreement at
all four ranges between Eq. (17) (first column) and experiment (second column).
However, phase errors in the solution of the KZK equation manifest themselves
as differences between the predicted and measured waveforms at z = 2.11 m and
z=25.36 m.
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Figure 8: Propagation curves for (a) the primary wave and (b) the nonlinearly
generated second harmonic component in a waveguide. Solid curves are obtained
from Eq. (17), dotted curves from equations based on the parabolic approximation,
and circles are measurements.!
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Figure 9: Calculated waveforms based on Eq. (17) (first column) and on the para-
bolic wave equation (third column). Measured waveforms are in the second column.
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